
sentinel Documentation
Release 0.1

Piyush Harsh

Nov 28, 2017

Contents:

1 Installation 3
1.1 Download sentinel . 3
1.2 Using docker-compose . 3
1.3 Install from source . 4

2 Using sentinel APIs 7
2.1 Key concepts . 7
2.2 API return codes at a glance . 8
2.3 Header fields at a glance . 8
2.4 APIs in details . 8

3 Sentinel agents 13
3.1 common configuration . 13
3.2 docker stats agent . 14
3.3 system stats agent . 14
3.4 logfile agent . 14
3.5 inline logger guidelines . 14

i

ii

sentinel Documentation, Release 0.1

Sentinel is a framework for monitoring anything anytime. It does not differentiate between logs or metrics, everything
is first class element within sentinel. The framework developers provide sentinel agents to cover most common use
cases, and a lot many others are being planned for future release.

Contents: 1

sentinel Documentation, Release 0.1

2 Contents:

CHAPTER 1

Installation

Sentinel can be easily installed using docker. The docker compose file is provided for convenience.

1.1 Download sentinel

git clone https://github.com/elastest/elastest-platform-monitoring.git

Now that you have the source code, you can either use docker to start sentinel, or you can build and package from
source.

1.2 Using docker-compose

Change into ’docker-support’ subfolder under the root folder of the git repo clone. Then execute docker-compose as
shown below:

docker-compose up

This command brings all the dependencies needed for sentinel:

• Grafana - grafana/grafana:4.3.2

• InfluxDB - influxdb:1.2.4-alpine

• Java8 - rolvlad/alpine-oraclejdk8

• Kafka - spotify/kafka:latest

The sentinel framework allows certain parameters to be set via environment variables. An example environment block
is shown next:

- STREAM_ADMINUSER=root
- STREAM_ADMINPASS=pass1234
- STREAM_DBENDPOINT=influxdb:8086

3

sentinel Documentation, Release 0.1

- STREAM_ACCESSURL=localhost:8083
- STREAM_DBTYPE=influxdb
- ZOOKEEPER_ENDPOINT=kafka:2181
- KAFKA_ENDPOINT=kafka:9092
- TOPIC_CHECK_INTERVAL=30000

Currently, sentinel works only with InfluxDB time-series backend. Support for emerging alternatives such as
Timescaledb is planned and will be added very soon.

• STREAM_ADMINUSER - the admin user for InfluxDB

• STREAM_ADMINPASS - choose a secure password for the just declared admin user

• STREAM_DBENDPOINT - the API endpoint of InfluxDB service, typically it is at port 8086

• STREAM_ACCESSURL - the InfluxDB UI URL that sentinel will return back to users, if your service is
running on an externally accessible node, change localhost with the FQDN or the IP of the node.

• ZOOKEEPER_ENDPOINT - the endpoint of the Zookeeper service

• KAFKA_ENDPOINT - the endpoint where Kafka cluster is reachable by sentinel

• TOPIC_CHECK_INTERVAL - defined in milliseconds, denotes the time interval between Kafka Topic query
by topic manager in Sentinel.

1.2.1 Configuring Kafka container

The kafka container allows certain parameters to be set via environment block.

- ADVERTISED_PORT=9092
- ADVERTISED_HOST=kafka

Care must be taken in defining ADVERTISED_HOST value. The best solution is to provide a FQDN or a public
IP if Kafka is to be accessed by external processes which will be the most common use-case of sentinel. Setting
an incorrect value of this parameter may leave your kafka cluster unreachable for external services, or even sentinel
process running in a container.

Our recommendation is to setup kafka cluster is a separate node entirely, and configure KAFKA_ENDPOINT pa-
rameter for sentinel as a FQDN string.

1.3 Install from source

Sentinel framework is written in Java and requires Oracle Java 8 for proper working. OpenJDK 8 should also work
but the codebase has not been tested with openJDK 8.

1.3.1 Requirements

• Maven 3.0.5 and higher

• Oracle Java 8

4 Chapter 1. Installation

sentinel Documentation, Release 0.1

1.3.2 Packaging

mvn clean package

The self-contained jar file is created under ./target/ folder. Unless the pom file was changed, the self contained jar file
is named sentinel-0.1.jar

To execute, simply run the jar as follows -

$ java -jar /path/to/jar/sentinel-0.1.jar

The above assumes that the application.properties file is in the classpath, or in the same folder as the jar file. In case
the application.properties file is kept some other location, please use the following command instead -

$ java -jar /path/to/jar/sentinel-0.1.jar --spring.config.location=/path/to/config/
→˓application.properties

1.3.3 Configuration options

All application configuration is provided via application.properties file. A sample file content is listed below.

spring.thymeleaf.mode=LEGACYHTML5
logging.level.org.springframework.web=WARN
logging.level.org.hibernate=ERROR
logging.level.org.apache.kafka=WARN
logging.level.org.jooq=WARN
spring.mvc.throw-exception-if-no-handler-found=true
logging.file=sentinel.log
server.port=9000
server.ssl.enabled=true
server.ssl.key-alias=sentinel
server.ssl.key-store=keystore.p12
server.ssl.key-store-type=PKCS12
server.ssl.key-store-password=pass1234
server.ssl.key-password=pass1234
displayexceptions=true
sentinel.db.type=sqlite
sentinel.db.endpoint=sentinel.db
kafka.endpoint=localhost:9092
kafka.key.serializer=StringSerializer
kafka.value.serializer=StringSerializer
zookeeper.endpoint=localhost:2181
topic.check.interval=30000
stream.db.type=postgres
stream.db.endpoint=localhost:5432
stream.db.adminuser=postgres
stream.db.adminpass=postgres
stream.dbtype=influxdb
stream.dbendpoint=localhost:8086
stream.accessurl=localhost:8083
stream.adminuser=root
stream.adminpass=1ccl@b2017
admin.token=eedsR2v5n4uh7Gjy
series.format.cache.size=100
published.api.version=v1

1.3. Install from source 5

sentinel Documentation, Release 0.1

Many of the entries in the application.properties file are self-explanatory. A few non-obvious ones are explained next
-

• server.port - on what port number sentinel APIs are accessible

• displayexceptions - set this to true if you want to include exceptions full trace in the log outputs

• sentinel.db.type - currently only sqlite is supported

• sentinel.db.endpoint - relative or absolute path of the DB file

• topic.check.interval - value in milliseconds indicating the gap between checking list of monitoring spaces for
subscription

• stream.dbtype - the time series DB where the monitor stream will be stored, currently only influxdb is supported

• stream.accessurl - the url /IP where the InfluxDB admin UI is accessible to the user (if enabled), this should be
an externally accessible FQDN ideally

• stream.adminuser - the name of the admin account in the stream DB (here influxdb), this value is meaningful
only when authentication and authorization is enabled in InfluxDB, otherwise the values are not enforced by
the DB

• admin.token - this is the master token using which a new user account can be created within sentinel, this value
should be accessible only to the administrators of the system, or within the API engine in case you wish to
support self registration by general public.

• series.format.cache.size - number of series signatures to be maintained in the in-memory cache of sentinel

6 Chapter 1. Installation

CHAPTER 2

Using sentinel APIs

Sentinel monitoring exposes a rich set of APIs for user and space management. The current release of sentinel has
APIs supporting bare-minimal features and as the features set get richer, so will be the APIs. Below are the list of
APIs currently offered by the framework -

• /v1/api/ - shows list of supported APIs

• /v1/api/user/ - everything to do with user management

• /v1/api/space/ - management of monitoring space

• /v1/api/series/ - management of series with any space

• /v1/api/key/ - API to retrieve user’s API key if forgotten

• /v1/api/endpoint - API to retrieve Sentinel’s data interface parameters

2.1 Key concepts

Space: Think of it as a collection of metrics belonging to different streams but somehow belonging to the same scope,
application or service. A space could be allocated to metrics of smaller services making up a larger application or
service.

Series: A series in Sentinel is a stream of metrics coming from the same source.

7

sentinel Documentation, Release 0.1

2.2 API return codes at a glance

API endpoint Verb Return codes Comments
/v1/api/ GET 200 ok

500 service down
/v1/api/user/ POST 201 created

400 check data
401 valid admin token needed
409 user account already exists
500 system error

/v1/api/user/{id} GET 200 ok
401 unauthorized
400 check data

/v1/api/space/ POST 201 created
400 check data
401 invalid api key
409 space already exists for user
500 system error

/v1/api/series/ POST 201 created
400 check data
401 invalid api key
409 series already exists for user
500 system error

/v1/api/key/{id} GET 200 ok
400 no such user exist
401 invalid password

/v1/api/endpoint GET 200 ok
401 invalid api key

2.3 Header fields at a glance

field key value / interpretations
Content-Type application/json is typical
x-auth-token admin user master token
x-auth-password password associated with user
x-auth-login username or userid
x-auth-apikey api key associated with user

2.4 APIs in details

Now that we have all the basic building buildings in place, lets explore each API endpoint in more details. In the fol-
lowing subsections lets assume that the sentinel API service is available at https://localhost:9000/. Also API example
will be provided as a valid cURL command.

8 Chapter 2. Using sentinel APIs

https://localhost:9000/

sentinel Documentation, Release 0.1

2.4.1 /v1/api/ GET

This API allows a quick check on the health status, if the service is alive a 200 status code is returned along with a list
of supported API endpoints.

curl -X GET https://localhost:9000/v1/api/

The response is similar to one shown below -

[
{
"endpoint": "/v1/api/",
"method": "GET",
"description": "get list of all supported APIs",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/user/",
"method": "POST",
"description": "add a new user ",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/user/{id}",
"method": "GET",
"description": "retrieve info about existing user",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/space/",
"method": "POST",
"description": "register a new monitored space",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/series/",
"method": "POST",
"description": "register a new series within a space",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/key/{id}",
"method": "GET",
"description": "retrieve the api-key for an user",
"contentType": "application/json"

},
{
"endpoint": "/v1/api/endpoint",
"method": "GET",
"description": "retrieve the agent's connection endpoint parameters",
"contentType": "application/json"

}
]

The output above is representative, and the actual API supported by sentinel varied during the time of writing of this
document.

2.4. APIs in details 9

sentinel Documentation, Release 0.1

2.4.2 /v1/api/user/ POST

Use this API to create a new user of sentinel. User account creation is an admin priviledged operation and the admin-
token is required as header for the call to be executed successfully.

curl -X POST https://localhost:9000/v1/api/user/ --header "Content-Type: application/
→˓json"
--header "x-auth-token: <admin-token>" -d '{"login":"username", "password":"some-
→˓password"}'

If the user already exists, you will get a 409 Conflict status response back. An example response upon successful
creation of an account looks as shown below, the actual value is for representation purposes only -

{
"login": "username",
"apiKey": "b6af63b9-f699-4259-8548-2a60e0d88661",
"id": 2,
"accessUrl": "/api/user/2"

}

The apiKey and id values should be saved as they are needed in some of the management API requests as you will see
later.

2.4.3 /v1/api/user/{id} GET

Use this API to retrieve the complete information about an user account, the monitoring spaces and series info included.
A valid api-key needs to be provided as a header field while making this call.

curl -X GET https://localhost:9000/v1/api/user/{id} --header "Content-Type:
→˓application/json"
--header "x-auth-apikey: valid-api-key"

If the call succeeds then the complete details of the account is returned back. A sample value returned is shown next.

{
"apiKey": "f3549958-8884-4649-9661-8ca338dfe141",
"id": 1,
"accessUrl": "/api/user/1",
"spaces": [

{
"id": 1,
"accessUrl": "/api/space/1",
"topicName": "user-1-cyclops",
"name": "cyclops",
"seriesList": [

{
"id": 1,
"accessUrl": "/api/series/1",
"name": "app-logs",
"msgFormat": "unixtime:s msgtype:json"

}
],
"dataDashboardUrl": "http://localhost:8083/",
"dataDashboardUser": "user1cyclops",
"dataDashboardPassword": "qkDaFQ8gJEokApS6"

}

10 Chapter 2. Using sentinel APIs

sentinel Documentation, Release 0.1

]
}

2.4.4 /v1/api/space/ POST

Use this API to create a new monitored space for a given user account in sentinel. A matching username and the
api-key needs to be provided as header fields. The body just contains the name of the space that one wishes to create.

curl -X POST https://localhost:9000/v1/api/space/ --header "Content-Type: application/
→˓json"
--header "x-auth-login: username" --header "x-auth-apikey: some-api-key"
-d '{"name":"space-name"}'

If the call is successful, the space id is returned back as confirmation. A sample response is shown next.

{
"id": 3,
"accessUrl": "/api/space/3",
"topicName": "user-1-new-space",
"name": "new-space",
"dataDashboardUrl": "http://localhost:8083/",
"dataDashboardUser": "user1new-space",
"dataDashboardPassword": "GeMHPDUwKc5621ZI"

}

2.4.5 /v1/api/series/ POST

A space by itself does not handle data streams, it is a container and needs a series to be defined before the metrics
sent to it can be persisted and analyzed later. This API allows creation of a series within an existing space. The
msgSignature allows sentinel to parse the incoming messages properly.

If the message being sent into sentinel is a single level JSON string, the unixtime:s msgtype:json value is sufficient.

curl -X POST https://localhost:9000/v1/api/series/ --header "Content-Type:
→˓application/json"
--header "x-auth-login: username" --header "x-auth-apikey: some-api-key"
-d '{"name":"series-name", "spaceName":"parent-space-name", "msgSignature":"msg-
→˓signature"}'

If the call is successful, a series id is returned. An example response block is shown for completeness.

{
"id": 2,
"accessUrl": "/api/series/2",
"name": "some-app-logs"

}

2.4.6 /v1/api/key/{id} GET

One can use this API if there is a need to retrieve the user api-key. The username should be a registered account and
the some-password header field should be the matching password for this account.

2.4. APIs in details 11

sentinel Documentation, Release 0.1

curl -X GET https://localhost:9000/v1/api/key/{username}
--header "Content-Type: application/json"
--header "x-auth-password: some-password"

If the call is successful, the API-key is returned. A sample response is shown next.

{
"apiKey": "f3549958-8884-4649-9661-8ca338dfe141",
"id": 1,
"accessUrl": "/api/user/1"

}

2.4.7 /v1/api/endpoint GET

This API call can be used to retrieve the connection parameters for the sentinel agents to send data streams to. The call
is available only to registered accounts, therefore a valid username and api-key needs to be supplied as header fields.

curl -X GET https://localhost:9000/v1/api/endpoint --header "Content-Type:
→˓application/json"
--header "x-auth-login: username" --header "x-auth-apikey: some-api-key"

If the call succeeds, the parameter block is returned that can be used to properly configure the sentinel agents. A
sample response is shown next.

{
"endpoint": "kafka:9092",
"keySerializer": "StringSerializer",
"valueSerializer": "StringSerializer"

}

12 Chapter 2. Using sentinel APIs

CHAPTER 3

Sentinel agents

Currently three sentinel agents are available and more are being planned and will be released in the near future.

• docker stats agent

• system stats agent

• logfile agent

• inline logging guidelines

In addition, it is very easy to use inline code to directly send your logs into sentinel. All agents are written in Python3
and need pip3 to install all dependencies.

3.1 common configuration

The agent configuration file is called sentinel-agent.conf. Depending on the type of agent you are executing / config-
uring, the configuration sections may be different. Here we present the common sections present in every configuration
file:

[kafka-endpoint]
endpoint = kafka-endpoint:9092
keySerializer = StringSerializer
valueSerializer = StringSerializer

• endpoint - set this to the end point of your kafka cluster associated with sentinel framework

[sentinel]
topic = some-topic-name
seriesName = your-series-name

• topic - the kafka topic-name that was allocated to sentinel user for a given monitoring space in sentinel

• seriesname - the series that was created within the monitoring space

13

sentinel Documentation, Release 0.1

Unless one is writing their own sentinel agent, there is probably no need to change any other configuration parameters
under [kafka-endpoint] or [sentinel] sections. Agent specific configuration parameters are covered in each agents
subsection next.

3.2 docker stats agent

The agent is located in the sentinel-agents/dockerstats/ subdirectory in the downloaded git repository. To install all
dependencies please use -

pip3 install -f requirements.txt

The agent can simply be executed via this command -

$ python3 sentinel-docker-agent.py

3.3 system stats agent

The agent is located in the sentinel-agents/systemstats/ subdirectory in the downloaded git repository. To install all
dependencies please use -

pip3 install -f requirements.txt

The agent can simply be executed via this command -

$ python3 sentinel-sys-agent.py

3.4 logfile agent

The agent is located in the sentinel-agents/logparsing/ subdirectory in the downloaded git repository. To install all
dependencies please use -

pip3 install -f requirements.txt

The agent can simply be executed via this command -

$ python3 sentinel-log-agent.py

3.5 inline logger guidelines

14 Chapter 3. Sentinel agents

	Installation
	Download sentinel
	Using docker-compose
	Install from source

	Using sentinel APIs
	Key concepts
	API return codes at a glance
	Header fields at a glance
	APIs in details

	Sentinel agents
	common configuration
	docker stats agent
	system stats agent
	logfile agent
	inline logger guidelines

